If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2+24a+12=0
a = 7; b = 24; c = +12;
Δ = b2-4ac
Δ = 242-4·7·12
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{15}}{2*7}=\frac{-24-4\sqrt{15}}{14} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{15}}{2*7}=\frac{-24+4\sqrt{15}}{14} $
| x4+x4+x2+x+3=300 | | f2+2f–3=0 | | x/5+18=25 | | -1/4x-8=8 | | f2+13f=0 | | 3x(9)=-111 | | 5s+3=57 | | x+x+x^2+x^4+3=300 | | (2y+5)-4y=22 | | 14+2x=89 | | 2x^2+7x-15=00 | | 100*n=0.25 | | -7x-15=2 | | x/5+18=20 | | 3x+7=-13 | | x+x+x/2+x/4+3=300 | | -(13/14)x=7 | | 0=437x^2+103x+11 | | 0.67*(6x+3)=4x+2 | | -7(-7+4)+4(3+2x)=-73 | | 1/5x=+7 | | 14=y+48/y | | 0.2x=+7 | | -3y=-2(-3)-6 | | -6x-12+16x=8 | | -3y=-2(-2)-6 | | 48+(2x+4)=112 | | 5(−2x−3)+3x+3=2 | | -3y=-2(-1)-6 | | -3y=-2(3)-6 | | –6x–32=2x | | -2h=-h-6 |